Menoufia University
Faculty of Engineering-Shebin Elkom
Prod. Eng. \& Mech. Design Department
First Semester Examination-2015/2016
Date of Exam: 21/1/2016

Subject: Applied Mechanics
Code: PRE 117
Year: First Elect.Department
Time Allowed: 3 hours
Total Marks : 60 marks

Answer all the following questions:

Question No. 1 (12 marks)

Draw the shear force and bending moment diagrams for the beam shown in Fig.(1).

Fig. 1
Question No. 2 (10 marks)
A partical of mass 10 kg is moving in a horizontal straight line with a initial velocity $\mathrm{v}_{0}=20$ m / s. An upward force F_{v} functioning in time is applied to it in a direction normal to the initial direction of motion. If the force F_{v} varies according to the graphical representation shown in Fig.(2). Determine the velocity of the partical when $t=4 \mathrm{sec}$ and its direction with respect to the force F_{v}. Suppose that the force does not change its directin .
Question No. 3 (8 marks)
A rigid bar of neglected mass is mounted on three similar springs of length $L=0.5 \mathrm{~m}$ and stiffness K as shown in Fig.(3). A block of mass $m=30 \mathrm{Kg}$ is droped on the bar from a hight of $h=0.6 \mathrm{~m}$ so that the springs deform identically. Determine the stiffness K of each spring required for the bar to reach its lowest position at $y=0.3 \mathrm{~m}$. Assume that the block is not to rebound after hitting the bar.

Fig. 3

Please see page no. 2

Question No. 4 (10 marks)

Two smooth spheres A and B have initial velocities just before they collide as shown in Fig.(4). If they have masses $m_{A}=10 \mathrm{~kg}$ and $m_{B}=5 \mathrm{~kg}$, determine their velocities just after impact, and Also find the loss in kinetic energy due to the impact if the coeffient of restitution $\mathrm{e}=0.8$.

Fig. 4

Question No. 5 (12 marks)

B
For the mechanism shown in Fig.(5), the crank OA rotates about a pin (O) with a constant angular speed of $\omega=30 \mathrm{rad} / \mathrm{s}$ (in clockwise direction). If the length of the crank $O A=6 \mathrm{~cm}$ and the connecting rod $\mathrm{AB}=18 \mathrm{~cm}$ and the rod $\mathrm{BC}=12 \mathrm{~cm}$, calculate the velocities of the block B and the block C . Also, determine the acceleration of the block B .

Question No. 6 (8 marks)

A vibrating system consists of three masses $m_{1}=m_{2}=m_{3}=2 \mathrm{Kg}$ connected to a massless beam and a set of springs and dampers as shown in Fig.(6). If the coefficients $K_{1}=K_{2}=100 \mathrm{~N} / \mathrm{m}$ and $\mathrm{c}_{1}=\mathrm{c}_{2}=0.5 \mathrm{~N} . \mathrm{s} / \mathrm{m}$ and $\mathrm{L}_{1}=\mathrm{L}_{2}=\mathrm{L}_{3}=0.4 \mathrm{~m}$. write dow the equation of motion and hence calculate the natural frequency of the system.

Fig. 5

Fig. 6

GOOD LUCIS

